AMR-CU70B/xx

Programmable controller with graphical display

Operation manual

Version 1.00

amr-cu70bxx_g_en_100

AMiT, spol. s r. o. does not provide any warranty concerning the contents of this publication and reserves the right to change the documentation without obligation to inform anyone or any authority about it.

This document can be copied and redistributed under following conditions:

- 1. The whole text (all pages) must be copied without any changes.
- 2. All redistributed copies must retain the AMiT, spol. s r.o. copyright notice and any other notices contained in the documentation.
- 3. This document must not be distributed for purpose of making profit.

The names of products and companies used herein can be trademarks or registered trademarks of their respective owners.

AMiT is a registered trademark.

Copyright (c) 2016, AMiT, spol. s r. o. Producer: AMiT, spol. s r. o. Naskové 1100/3, 150 00 Praha www.amitomation.com

Technical support: support@amit.cz

Contents

	History of revisions	4
	Related documentation	4
1	Introduction	5
2	Technical parameters	6
2.1 2.2	Dimensions Recommended drawing symbol	9 9
3	Conformity assessment	10
3.1	Other tests	11
4	Power supply and RS485 communication interface	12
5	RTD inputs	15
6	Analogue output	17
7	Digital outputs	19
8	Mounting	21
8.1 8.2	Mounting procedure Installation rules	
9	Programming and setting	24
9.1	Loader	24
10	Factory settings	
11	Ordering information and completion	27
11.1	Completion	27
12	Maintenance	
13	Waste disposal	

History of revisions

Document name: amr-cu70bxx_g_en_100.pdf

Revision	Date	Author of change	Changes
100	01. 07. 2016	Březina Jiří	New document

Related documentation

- 1. Help file for EsiDet part of DetStudio development environment file: Esidet_en.chm
- 2. Application Note AP0016 Principles of RS485 interface usage file: ap0016_en_xx.pdf

1 Introduction

AMR-CU70B/xx is a freely programmable controller with a graphical display. The entire display is covered with a touch panel that serves for controller operation.

- **Basic features** FSTN display with resolution of (64 × 132) pixels
 - Controlling through touchscreen
 - RS485 interface without galvanic isolation
 - Power supply 24 V DC
 - Room temperature measurement internal sensor
 - 2 × RTD input
 - 2 × digital output
 - 1 × analogue output 0 V DC to 10 V DC
 - Programming in DetStudio development environment / EsiDet
 - Communication protocol MODBUS or ARION

2 Technical parameters

Processor	Туре	STM32F207	
	FLASH	512 KB	
	SRAM	128 KB	
	EEPROM	32 KB	
	RAM (4 kB) + RTC back-up	Replaceable lithium battery CR1632	
	Battery lifetime	5 years in normal environment ¹)	
Note	¹) Normal environment is defined at 2	25° C temperature.	
RTC	Туре	Processor component	
	Precision at 25 °C	±20 ppm	
Display	Туре	FSTN / positive / BW	
	Resolution	(64 × 132) pixels	
	Visible area	(38 × 58) mm	
	Viewing angle	90 °	
	Backlight	LED	
	Backlight colour	White	
	Backlight lifetime	Min. 50 000 hours ²)	
Note	²) Luminance drop to 50 %.		
Touch panel	Туре	Resistive	
•	Number of touches	10 ⁶	
	Touching strength	10 g to 100 g	
	Hardness	≥3H	
Noto	Touch panal is intended to be appareted	hy finger teal without aborn addres or by	
finger-in-glove.			
Temperature	Туре	Semiconductor sensor	
sensor	Measurement range	-55 °C to +125 °C ³)	
	Resolution	12 bits	
	Accuracy	±2 °C (-55 °C to 0 °C)	
		±0.5 °C (0 °C to +50 °C)	
		±2 °C (50 °C to +125 °C)	
	Device temperating	45 min ⁴)	
<i>Note</i> ³) Sensing element parameters, operating temperature range of c controller is lower.		perating temperature range of on-wall	
	time.	ment accuracy is reduced to ±2 °C at this	

RTD inputs ⁵) [

Number of inputs	2
Inputs type ⁶)	Dry contact / Ni1000 / Pt1000
Common wire	AGND ⁷)
Galvanic isolation	No
Input overvoltage protection	Diodes
Connection point	Terminal block WAGO 252-108
Wire cross section	0.4 mm ² to 0.8 mm ²
Maximum inlet wire length	30 m

Note ⁵) RTD is a shortcut for English term "resistance temperature detector". This type inputs can be used for temperature measurement using resistive sensors or as dry contact digital inputs.

- ⁶) The way of RTD input use depends on application created in DetStudio/EsiDet environment.
- ⁷) Terminal AGND is internally connected with controller's GND terminal.

Input Ni1000 / Pt1000

Measured temperature range – Ni1000 (6180 ppm/°C) Ni1000 (5000 ppm/°C)	-35 °C to +120 °C
– Pt1000 (3850 ppm/°C)	-40 °C to +145 °C -45 °C to +205 °C
Accuracy	
– Ni1000 (6180 ppm/°C)	±0.5 °C
– Ni1000 (5000 ppm/°C)	±0.6 °C
– Pt1000 (3850 ppm/°C)	±0.8 °C
Input temperature dependence	70 ppm/°C

Dry contact

R _{min} for log. 0	> 1320 Ω
R _{max} for log. 1	< 1080 Ω

Number of outputs	2
Switching element	MOS
Switching voltage	21.6 V DC to 26.4 V DC ⁸)
Switching current	300 mA
Overcurrent protection volume	Typically 1.5 A
Residual current at log. 0	0 mA
Contact closing time	Typically 60 μs
Contact opening time	Typically 60 μs
Short-circuits protection	Electronic
Inductive load handling	Electronic
Galvanic isolation	No
Connection points	Terminal block WAGO 252-108
Wire cross section	0.4 mm ² to 0.8 mm ²
	Number of outputsSwitching elementSwitching voltageSwitching currentOvercurrent protection volumeResidual current at log. 0Contact closing timeContact opening timeShort-circuits protectionInductive load handlingGalvanic isolationConnection pointsWire cross section

*Note*⁸) Switching voltage must be connected to controller's terminal no. 12.

Analog out

gue	Number of outputs	1
put	Output type	0 V DC to 10 V DC
	Common wire	AGND ⁹)
	Minimum load	1 kΩ
	Maximum capacitive load	10 nF
	Maximum current	10 mA

Setting accuracy	0.2 %
Resolution	10 bits
Resolution per 1 bit	10 mV
Transition time 0 V to 10 V DC,	Maximum 25 ms
accuracy 1 %	
Residual ripple	20 mV
Temperature dependence	35 ppm/°C
Output circuitry protection	Zener diodes
Galvanic isolation	No
Connection point	Terminal block WAGO 252-108
Wire cross section	0.4 mm ² to 0.8 mm ²

Note ⁹) AGND terminal is internally connected with controller's GND terminal.

RS485

5	Overvoltage protection		Transil 600 W
	Galvanic isolation		No
	Terminating resistor ¹⁰)		120 Ω on the unit
	Idle state definition ¹⁰)	– to +5 V	820 Ω on the unit
		– to 0 V	820 Ω on the unit
	Maximum wire length		1200 m / 19200 bps
	Max. number of stations or	n segment	256
	Connection point		Terminal block WAGO 252-104
	Wire cross section		0.4 mm ² to 0.8 mm ²

Note ¹⁰) Terminating resistor and idle state definition are connected concurrently.

Power supply	Nominal power supply voltage	24 V DC
	Power supply voltage range	10 V DC to 30 V DC
	Maximum power consumption	40 mA ¹¹)
	Power dissipation (typical)	0.4 W
	Connection point	Terminal block WAGO 252-104
	Wire cross section	0.4 mm ² to 0.8 mm ²
	Power supplying system	The equipment must not be power supplied from DC distribution network of building ¹²)
Notes	¹¹) Without connected inputs and outp ¹²) For detailed information see ch	outs. apter "8.2 Installation rules" paragraph

) For detailed information see chapter "8.2 Installation rules" paragraph "Power supply".

Mechanics	Mechanical design	Plastic cover, ABS
Mounting		Vertical (on the wall)
Ingress protection rate		IP20
Dimensions (w × h × d)		(90 × 90 × 32) mm
Weight – netto		0.10 kg
– brutto		0.14 kg
Temperatures	Operating temperature range	-10 °C to 50 °C
	Storage temperature range	-20 °C to 70 °C
Others	Maximum ambient humidity	< 95 % non-condensing
	Programming	DetStudio / EsiDet

2.1 Dimensions

2.2 Recommended drawing symbol

Following drawing symbol is recommended for the controller AMR-CU70B/xx.

Fig. 2 – Recommended drawing symbol for AMR-CU70B/xx

3 Conformity assessment

The equipment meets the requirements of NV616/2006 Czech Government Decree. The compliance assessment with NV616/2006 has been performed in accordance with harmonized standard EN 61326-1.

Tested in accordance with standard	Type of test	Classification
EN 55011:2009	Industrial, scientific and medical equipment – Radio-frequency disturbance characteristics – Limits and methods of measurement	Complies
EN 61000-4-2:2009	Electromagnetic compatibility (EMC) – Part 4-2: EMC – Testing and measurement techniques – Electrostatic discharge immunity test, aerial discharge	Complies (8 kV)
EN 61000-4-2:2009	Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Indirect electrostatic discharge immunity test, contact discharge	Complies (±4 kV)
EN 61000-4-3:2006	Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio- frequency, electromagnetic field immunity test, 800 MHz to 1000 MHz	Complies (10 V/m)
EN 61000-4-3:2006	Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio- frequency, electromagnetic field immunity test, 1000 MHz to 2100 MHz	Complies (3 V/m)
EN 61000-4-3:2006	Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio- frequency, electromagnetic field immunity test, 2100 MHz to 2500 MHz	Complies (1 V/m)
EN 61000-4-4:2012	Electromagnetic compatibility (EMC) – Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test, power supply	Complies (±2 kV)
EN 61000-4-4:2012	Electromagnetic compatibility (EMC) – Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test, RTD inputs, analogue output, digital output, RS485	Complies (±2 kV)
EN 61000-4-5:2006	Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test, power supply, RTD input, digital output, RS485	Complies (±1 kV)

Tested in accordance with standard	Type of test	Classification
EN 61000-4-6:2009	Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio- frequency fields	Complies (3 V)

3.1 Other tests

Device was tested according to:

	-	
Tested in accordance with standard	Type of test	Result
EN 60068-2-1:2007	Environmental testing – Part 2-1: Tests – Test A: Cold	Complies
EN 60068-2-2:2007	Environmental testing – Part 2-2: Tests – Test B: Dry heat	Complies
EN 61000-4-29:2000	Electromagnetic compatibility (EMC) – Part 4-29: Testing and measurement techniques – Voltage dips, short interruptions and voltage variations on DC input power port – Immunity test	Complies

4 Power supply and RS485 communication interface

- **Power supply** The programmable controller **AMR-CU70B/xx** can be power supplied only by DC power supply. Power supply must meet requirements listed in chapter "2 Technical parameters".
 - **RS485** The RS485 interface without galvanic isolation uses the common GND terminal interface together with power supply. It is necessary to follow the rules mentioned in application note AP0016 Principles of RS485 interface usage for correct working of RS485.

Legend	Number	Description
	1	Terminals for power supply and RS485 interface

Terminal	Terminal	Signal	Description
wiring	1	+24V	Power supply +24 V DC
	2	GND	Common ground
	3	В	RS485 interface, signal B
	4	А	RS485 interface, signal A

Fig. 4 - Power supply and RS485 wiring example

Legend	Number	Description	
	1	Power supply 24 V DC	
	2	Superior control system	
	3	Programmable controller AMR-CU70B/xx	

RS485 wires Each station on RS485 communication network must have properly set termination the wires termination. Configuration jumpers located near the connector are used for termination connection. If jumpers are placed, termination is connected. The terminal stations must have always connected terminating resistors, intermediate stations – disconnected.

Fig. 5 – RS485	configuration	jumpers	location
----------------	---------------	---------	----------

Legend	Number	Description
1		RS485 configuration jumpers

Jumpers Jumpers Description		Description
description	Are set	Terminal station – idle states and wires termination are active.
	Are not set	Intermediate station – idle states and wires termination are inactive.

Note It is recommended to use structured cabling for power supply and RS485 wiring during installation. For power connection, it is recommended to use one pair of wires for positive terminal and second pair for negative terminal. Cable shielding must be connected in a single point to a PE terminal on the side of the power supply source.

Fig. 6 - Structured cabling use example

5 RTD inputs

The programmable controller **AMR-CU70B/xx** contains two RTD inputs. The inputs can operate in a dry contact mode or as inputs for resistive temperature sensors Ni1000/6180, Ni1000/5000 or Pt1000.

Fig. 7 – Location of terminals for RTD inputs

```
        Legend
        Number
        Description

        1
        Terminals for RTD inputs terminals
```

Terminals RTD inputs together with analogue output use the common terminal AGND. *wiring*

Terminal	Signal	Description
5	RTD1	RTD input 1
6	RTD0	RTD input 0
7	AGND	Analogue ground ¹³)

Note ¹³) Terminal no. 7 (AGND) is common for both RTD inputs and the analogue output. Terminal AGND is internally connected with controller's terminal GND.

Wiring examples

Fig. 9 – Dry contact wiring example

6 Analogue output

The programmable controller **AMR-CU70B/xx** contains one analogue voltage output. The analogue output has a current limit, see chapter "2 Technical parameters".

Fig. 10 - Location of terminals for analogue output

```
        Legend
        Number
        Description

        1
        Terminals for analogue output
```

Terminals Analogue output and RTD inputs use the common terminal AGND.

wiring	Terminal	Signal	Description
	7	AGND	Analogue ground ¹⁴)
	8	AO0	Analogue output

Note ¹⁴) Terminal no. 7 (AGND) is common for both RTD inputs and analogue output. Terminal AGND is internally connected with controller's terminal GND.

Number	Description
1	AC voltage power supply

7 Digital outputs

The programmable controller **AMR-CU70B/xx** contains two digital inputs with a common power supplying input.

Legend	Number	Description	
1 Terminals for digital outputs		Terminals for digital outputs	

Terminals	Terminal	Signal	Description
wiring	9	GND	Digital ground
	10	DO1	Digital output 1
	11	DO0	Digital output 0
	12	DO+24V	Power supply input for digital outputs

Legend	Number	Description		
	1	DC power supply		

8 Mounting

The programmable controller is intended to be mounted in indoor, dry environment. The controller should be placed about 1.5 m above the floor in a place with good air circulation in case of the internal temperature measurements. The controller should not be placed in area where its temperature can be affected by the wind, sunshine, heat radiation from the heater, or other undesirable influences. If the inlet wires are led through the plastic pipe, it is necessary to seal the pipe to avoid an air flow.

Fig. 14 – The controller mounting in vertical position (left), in horizontal position (right)

Vertical The controller is mounted according to Fig. 14 left. The temperature sensor is *mounting* located in left lower corner.

- *Horizontal* The controller is mounted according to Fig. 14 right. The temperature sensor is *mounting* located in right lower corner.
 - *Note* The temperature sensor is heated by internal electronics in another assembly method than it is recommended. This leads to erroneous temperature readings.

8.1 Mounting procedure

1. Release the cover by pressing the latch on the left side of the controller (e.g. with screwdriver or blunt spike) and pull out the front part with display and the electronics at the same time.

Fig. 15 – Place that must be pressed with blunt spike

- 2. Push the cabling through a cover hole. Mount the cover on a selected location. There are two pairs of mounting holes available.
- 3. Remove the terminal block for power supplying connection with communication interface (see chapter "4 Power supply and RS485 communication interface"). Connect the communication and power supplying wires to the terminal block and place the terminal block back on the connector pins. Cables led towards the unit center.
- 4. Set the configuration jumpers (see chapter "4 Power supply and RS485 communication interface").
- 5. Remove the terminal block for input and output wires connection from connector (see chapter "5 RTD inputs", chapter "6 Analogue output" and chapter "7 Digital outputs"). Connect the inputs and outputs and place the terminal block back on the connector pins.
- 6. Put on the front part with electronics on rear cover and fit it in.

8.2 Installation rules

- *EMC filter* Use an EMC filter on power supply voltage input. This may be revised on a basis of wiring layout, environment character and power source properties.
- **Power supply** The equipment must not be power supplied from DC distribution network in building. More equipment can be power supplied from a single power supply assuming the similar-type equipment and the same building location.

Cabling Cablings connected to terminals for power supply and RS485 interface must be *design* shielded.

Connection Wire the negative power supplying terminal of controller (GND) and cable *to PE* shielding to a PE terminal in one place, close to the power supply.

RS485 It is necessary to perform RS485 interface connection according to *interface* recommendations mentioned in application note *AP0016 – Principles of RS485 interface usage*.

Note All PE terminal connections must be realized with the lowest impedance as possible. Technical parameters of the programmable controller are guaranteed only when these wiring rules are applied.

9 Programming and setting

The programmable controller **AMR-CU70B/xx** is factory-programmed with a loader that allows a user application uploading.

This application can be created through:

DetStudio / EsiDet development environment

The application can be uploaded into the controller through:

 DetStudio
 AMRconfig
 AMRmultidownload
 development environment service and programming utility multiprogramming utility

Development environment can be freely downloaded from <u>www.amitomation.com</u>.

9.1 Loader

Loader running state can be used in the cases the user application is causing any troubles, e.g. repeated restarting, controller connection inability, etc.

Loader Loader can be activated by service jumper connection. Particular action is activation called-out according to the moment and duration of the connection, see following table.

Connection duration	Action
> 1 s	Loader with original communication parameters is
 after turning on 	launched.
> 3 s and < 10 s	Loader with original communication parameters is
 – during application run 	launched.
> 10 s	Loader with factory pre-set communication parameters is
	launched, see chapter "10 Factory settings". The original
	application is launched after each next start.

Jumper The service jumper located on PCB is accessible after the cover is taken off, *location* see Fig. 16.

Note An unwanted connection of the neighbouring pins has no effect on controller's functionality when it is powered-on.

Legend	Number	Description		
	1	Service jumper		

10 Factory settings

Program	Item	Set value
settings	Network type	Modbus RTU
	Address	1
	Speed	38400 bps
	Parity	Even

11 Ordering information and completion

Programmable	AMR-CU70B/xx ¹) Complete, see chapter 11.1 Completion			
controller Note	¹) xx indicates a product colour design. Available versions are showed in the following table.			
	5	Rear cover colour	Front cover colour	
Colour	AMR-CU70B/01	grey	white	
variants	AMR-CU70B/02	ivory	ivory	
	AMR-CU70B/03	grey	grey	
	AMR-CU70B/04	white	white	
Others	MN1	Cover removal tool		

11.1 Completion

AMR-CU70B/xx	Part	Quantity
	Programmable controller	1
	Battery CR1632	1

12 Maintenance

With exception of cleaning, the device requires no periodic control, nor maintenance.

- *Cleaning* Time after time it is necessary to remove dust from the device according to the way of use. The device can be cleaned by dry soft brush or vacuum cleaner, only when turned-off and disassembled.
 - *Note* The maintenance mentioned above can be performed by manufacturer or authorized service only!

13 Waste disposal

Electronics A disposal of the device is governed by regulations on handling electrical waste. *disposal* The device must not be disposed in common public waste. It must be delivered to the places specified for that purpose and recycled.