AMR-IRC20/01

Programmable controller

Operation manual

Version 1.00

amr-irc2001_g_en_100

AMiT, spol. s r. o. does not provide any warranty concerning the contents of this publication and reserves the right to change the documentation without obligation to inform anyone or any authority about it.

This document can be copied and redistributed under following conditions:

- 1. The whole text (all pages) must be copied without any changes.
- 2. All redistributed copies must retain the AMiT, spol. s r.o. copyright notice and any other notices contained in the documentation.
- 3. This document must not be distributed for purpose of making profit.

The names of products and companies used herein can be trademarks or registered trademarks of their respective owners.

AMiT is a registered trademark.

Copyright (c) 2016, AMiT, spol. s r. o. Producer: AMiT, spol. s r. o. Naskové 1100/3, 150 00 Praha www.amitomation.com

Technical support: support@amit.cz

Contents

	History of revisions Related documentation	
1	Introduction	
2	Technical parameters	6
2.1	Dimensions	9
2.2	Recommended drawing symbol	10
3	Conformity assessment	11
3.1	Other tests	
4	Power supply	13
5	Communication interfaces	15
5.1	RS485 without galvanic isolation (COM0)	
5.1.1	On-wall controller connection	
5.2	RS485 with galvanic isolation (COM1)	
6	Inputs / outputs	
6.1	Analogue inputs	
6.2	RTD inputs	
7	Analogue outputs	
7		
8	Relay outputs	
-		26
8	Relay outputs	26 28
8 9	Relay outputs Mounting	26 28
8 9 9.1	Relay outputs	
8 9 9.1 10 10.1 10.1.1	Relay outputs Mounting Installation rules Programming and setting Communication parameters setting RS485 without galvanic isolation (COM0)	
8 9 9.1 10 10.1	Relay outputs Mounting Installation rules Programming and setting Communication parameters setting RS485 without galvanic isolation (COM0) RS485 with galvanic isolation (COM1)	
8 9 9.1 10 10.1 10.1.1	Relay outputs Mounting Installation rules Programming and setting Communication parameters setting RS485 without galvanic isolation (COM0) RS485 with galvanic isolation (COM1) DIP SW1 – communication speed and parity setting	26 28 28 30 30 30 30 30 31
8 9 9.1 10 10.1 10.1.1	Relay outputs Mounting Installation rules Programming and setting Communication parameters setting RS485 without galvanic isolation (COM0) RS485 with galvanic isolation (COM1)	
8 9 9.1 10 10.1 10.1.1 10.1.2	Relay outputs Mounting Installation rules Programming and setting Communication parameters setting RS485 without galvanic isolation (COM0) RS485 with galvanic isolation (COM1) DIP SW1 – communication speed and parity setting DIP SW2 – address setting	26 28 30 30 30 30 31 31 31 33
8 9 9.1 10 10.1 10.1.1 10.1.2 10.2	Relay outputs Mounting Installation rules Programming and setting Communication parameters setting RS485 without galvanic isolation (COM0) RS485 with galvanic isolation (COM1) DIP SW1 – communication speed and parity setting DIP SW2 – address setting LED S0	26 28 28 30 30 30 30 30 31 31 31 33 34
8 9 9.1 10 10.1 10.1.1 10.1.2 10.2 10.3	Relay outputs Mounting Installation rules Programming and setting Communication parameters setting RS485 without galvanic isolation (COM0) RS485 with galvanic isolation (COM1) DIP SW1 – communication speed and parity setting DIP SW2 – address setting LED S0 Loader	26 28 28 30 30 30 30 31 31 31 33 34 34 35
8 9 9.1 10 10.1 10.1.1 10.1.2 10.2 10.3 11	Relay outputs Mounting Installation rules Programming and setting Communication parameters setting RS485 without galvanic isolation (COM0) RS485 with galvanic isolation (COM1) DIP SW1 – communication speed and parity setting DIP SW2 – address setting LED S0 Loader Factory settings	26 28 28 30 30 30 30 30 30 31 31 31 31 33 34 35 36
 8 9 9.1 10 10.1 10.1.1 10.1.2 10.2 10.3 11 12 	Relay outputs Mounting Installation rules. Programming and setting Communication parameters setting. RS485 without galvanic isolation (COM0) RS485 with galvanic isolation (COM1) DIP SW1 – communication speed and parity setting. DIP SW2 – address setting LED S0 Loader Factory settings Ordering information and completion	26 28 28 30 30 30 30 30 30 30 30 30 31 31 31 33 34 34 35 36 36

History of revisions

Document name: amr-irc2001_g_en_100.pdf

Revision	Date	Author of change	Changes
100	12. 10. 2016	Březina Jiří,	New document.
		Říha Zbyněk	

Related documentation

- 1. Help file for EsiDet part of DetStudio development environment file: Esidet_en.chm
- 2. Application Note AP0016 Principles of RS485 interface usage file: ap0016_en_xx.pdf

1 Introduction

AMR-IRC20/01 is a small, compact, freely programmable controller.

Basic features •

res • 2 × analogue input 0 V to 10 V

- 2 × RTD input
- 3 × analogue output 0 V to 10 V
- 2 × relay output
- 1 × RS485 interface with galvanic isolation
- 1 × RS485 interface without galvanic isolation
- Programming in DetStudio development environment / EsiDet
- Power supply 230 V AC

2 Technical parameters

Processor	Туре	STM32F103
	FLASH	512 KB
	SRAM	64 KB
	EEPROM	32 KB
Analogue	Number of inputs	2
inputs	Inputs type	0 V DC to 10 V DC
	Common wire	AGND ¹)
	AD converter resolution / LSB	10 bits / 3.22 mV
	Accuracy	1 % ²)
	Temperature dependence	50 ppm/°C
	Galvanic isolation	No
	Input overvoltage protection	Diodes
	Connection point	Cage clamp terminals WAGO 256
	Wire cross section	0.08 mm ² to 2.5 mm ²
	Maximum inlet wire length	30 m
Note	¹) Terminal AGND is internally	connected with controller's terminal GND.
		e reduced during electromagnetic disturbance,
	see also chapter "3 Conform	
		,
RTD inputs ³)	Number of inputs	2
	Type of inputs ⁴)	Dry contact / Ni1000 / Pt1000
	Common wire	AGND ⁵)
	Galvanic isolation	No
	Input overvoltage protection	Diodes
	Connection point	Cage clamp terminals WAGO 256
	Wire cross section	0.08 mm ² to 2.5 mm ²
	Maximum inlet wire length	30 m
	Input Ni1000 / Pt1000	
	Measured temperature range	
	– Ni1000 (6180 ppm/°C)	-35 °C to +120 °C
	– Ni1000 (5000 ppm/°C)	-40 °C to +145 °C
	– Pt1000 (3850 ppm/°C)	-45 °C to +205 °C
	Accuracy ⁶)	
	– Ni1000 (6180 ppm/°C)	±0.5 °C
	 – Ni1000 (5000 ppm/°C) – Pt1000 (3850 ppm/°C) 	±0.6 °C ±0.8 °C
	Input temperature dependence	70 ppm/°C
	Dry contact	
		> 1320 Ω
	R _{min} for log. 0	1080 Ω
	R _{max} for log. 1	× 1000 12

Note ³) RTD is a shortcut for English term "resistance temperature detector". This type of inputs can be used for temperature measurement through resistive sensors or as dry contact digital inputs.

- 4) The way of RTD input use depends on application created in DetStudio/EsiDet environment.
- ⁵) ⁶) Terminal AGND is internally connected with controller's terminal GND.
- Valid for 25 °C. The accuracy depends on the measured value and it does not contain the accuracy of the connected stand-alone sensor.

Analogue	Number of outputs	3	
output	Output type	0 V DC to 10 V DC	
	Common wire	AGND ⁷)	
	Output internal impedance	120 Ω	
	Minimum load	1 kΩ	
	Maximum capacitive load	10 nF	
	Maximum current	10 mA	
	Setting accuracy	1.5 % ⁸)	
	Resolution	10 bits	
	Resolution per 1 bit	3.22 mV	
	Transition time 0 V to 10 V DC,	Maximum 25 ms	
	accuracy 1 %		
	Residual ripple	20 mV	
	Temperature dependence	35 ppm/°C	
	Output circuitry protection	Zener diodes	
	Galvanic isolation	No	
	Connection point	Cage clamp terminals WAGO 256	
	Wire cross section	0.08 mm ² to 2.5 mm ²	
Note		connected with controller's terminal GND. t loaded with resistance 10 k Ω .	

Relay outputs	Number of outputs	2
	Туре	Switching relay contact
	Contacts protection	Varistor
	Galvanic isolation	Yes
	GI insulation strength	4000 V AC
	Nominal switched voltage	230 V AC / 24 V DC
	Maximum switched current	4 A (resistance load)
	Switch-on time	10 ms
	Switch-off time	5 ms
	Contact lifetime	
	 – without load 	30×10 ⁶ cycles
	– nominal load	10 ⁵ cycles
	Maximum switching frequency	
	– without load	72 000/hour
	– nominal load	360/hour
	Connection point	Cage clamp terminals WAGO 256-401
	Wire cross section	0.08 mm ² to 2.5 mm ²

Power supply	Nominal power supply voltage	24 V DC	
output Maximum power consumption		70 mA	
Protection against short circuit		PTC thermistor	
Connection point		Cage clamp terminals WAGO 256-401	
	Wire cross section	0.08 mm ² to 2.5 mm ²	

RS48

35 Quantity	2
Overvoltage protection	Transil 600 W
Galvanic isolation ⁹)	1 × Yes, 1 × No
Terminating resistor ¹⁰)	120 Ω on the unit
Idle state definition ¹⁰)	
– up to +5 V	820 Ω on the unit
– to 0 V	820 Ω on the unit
Maximum wire length	1200 m / 19200 bps
Max. number of stations on	256
segment	
Connection point	Cage clamp terminals WAGO 256
Wire cross section	0.08 mm ² to 2.5 mm ²

Note ⁹) Insulation strength is 2500 V against power supply terminals. Insulation strength is 500 V against electronics. Galvanic isolation against electronics must not be used for dangerous voltage separation.

¹⁰) Terminating resistor and idle state definition for interface COM0 are permanently connected. Terminating resistor and idle state definition are connected through configuration jumpers in case of interface COM1.

Power supply	Nominal power supply voltage	230 V AC
	Power supply voltage range	207 V AC to 253 V AC
	Maximum power consumption	0.055 A ¹¹)
	Power dissipation (typical)	6.3 W
	Connection point	Cage clamp terminals WAGO 256
	Wire cross section	0.75 mm ² to 2.5 mm ²

Notes ¹¹) Without connected inputs and outputs.

Programming

Mechanics	Mechanical design	Steel sheet, light grey
	Mounting	On the base plate
	Ingress protection rate	IP20
	Dimensions (w × h × d)	(157 × 95 × 51) mm
	Weight – netto	0.67 kg
	– brutto	0.75 kg
Temperatures	Operating temperature range	-10 °C to 50 °C
	Storage temperature range	-20 °C to 70 °C
Others	Maximum ambient humidity	< 95 % non-condensing

DetStudio / EsiDet

2.1 Dimensions

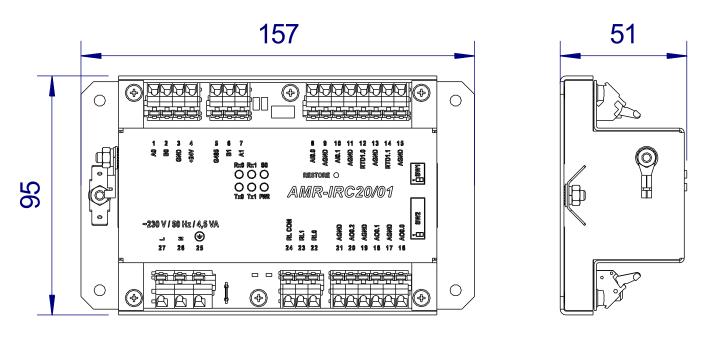


Fig. 1 - AMR-IRC20/01 dimensions

2.2 Recommended drawing symbol

Following drawing symbol is recommended for the controller **AMR-IRC20/01**.

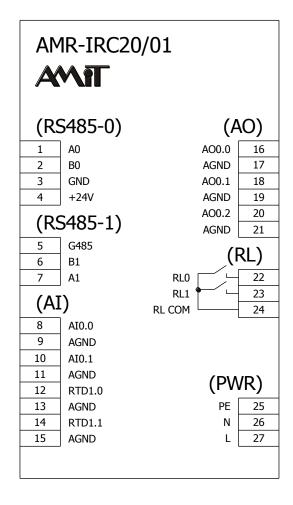


Fig. 2 – Recommended drawing symbol for AMR-IRC20/01

3 Conformity assessment

The equipment meets the requirements of NV616/2006 Czech governmental decree. The compliance assessment with NV616/2006 has been performed in accordance with harmonized standard EN 61326-1.

Tested in accordance with standard	Type of test	Classification
EN 55011:2009	Industrial, scientific and medical equipment – Radio-frequency disturbance characteristics – Limits and methods of measurement	Complies
EN 61000-4-2:2009	Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Direct electrostatic discharge immunity test, indirect contact discharge	Complies (±8 kV)
EN 61000-4-2:2009	Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test, direct contact discharge	Complies (±4 kV)
EN 61000-4-3:2006	Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio- frequency, electromagnetic field immunity test, 800 MHz to 1000 MHz	Complies (10 V/m)
EN 61000-4-3:2006	Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio- frequency, electromagnetic field immunity test, 1000 MHz to 2100 MHz	Complies (3 V/m)
EN 61000-4-3:2006	Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio- frequency, electromagnetic field immunity test, 2100 MHz to 2500 MHz	Complies (1 V/m)
EN 61000-4-4:2012	Electromagnetic compatibility (EMC) – Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test, power supply	Complies (±2 kV)
EN 61000-4-4:2012	Electromagnetic compatibility (EMC) – Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test, RTD inputs, analogue outputs, digital outputs, RS485	Complies (±1.5 kV)
EN 61000-4-5:2006	Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test, power supply between wires and PE	Complies (±2.5 kV)

Tested in accordance with standard	Type of test	Classification
EN 61000-4-5:2006	Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test, power supply between wires, analogue inputs, analogue outputs, digital outputs	Complies (±1.5 kV)
EN 61000-4-5:2006	Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test, RS485	Complies (±1.5 kV)
EN 61000-4-6:2009	Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio- frequency fields	Complies (3 V)

3.1 Other tests

Device was tested according to:

Tested in accordance with standard	Type of test	Result
EN 60068-2-1:2007	Environmental testing – Part 2-1: Tests – Test A: Cold	Complies
EN 60068-2-2:2007	Environmental testing – Part 2-2: Tests – Test B: Dry heat	Complies
EN 61000-4-29:2000	Electromagnetic compatibility (EMC) – Part 4-29: Testing and measurement techniques – Voltage dips, short interruptions and voltage variations on DC input power port – Immunity test	Complies

4 **Power supply**

Power supply The programmable controller **AMR-IRC20/01** is power supplied from single-phase network 230 V AC. The controller must be protected externally through circuit breaker. Power supply voltage connection is indicated by the LED PWR.

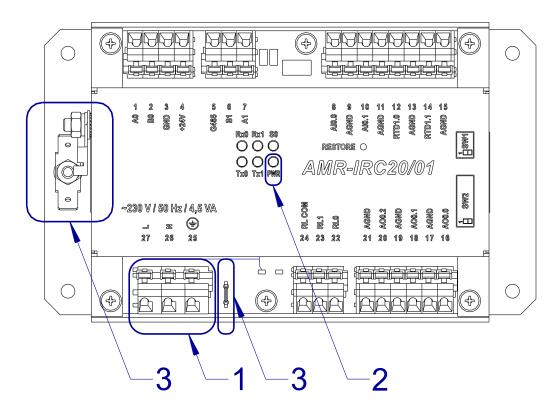


Fig. 3 – Terminals location for power supply

Legend	Number	Description
	1	Terminals for power supply
	2	LED PWR
	3	Terminals for connection between metal parts and protective conductor

Terminals	Terminal	Signal	Description
marking	25	(-)	Protective conductor
	26	Ν	Neutral conductor
	27	L	Phase conductor

Protective The protective conductor terminal is connected with metal mechanical conductor components in a way that hazardous contact voltage protection is ensured. The protective conductor must be always connected!!!

LEDs state	LED	Description
description	Lit	Power supply is connected
	Not lit	Power supply is not connected

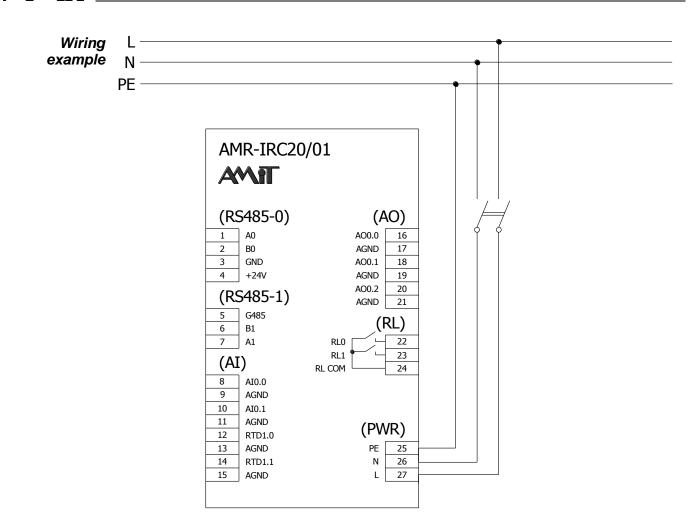


Fig. 4 – Power supply wiring example

5 Communication interfaces

The programmable controller **AMR-IRC20/01** is fitted with two RS485 communication interfaces. RS485 is a half-duplex serial interface. It is used for application software uploading into the controller and can be also used for multiple stations connection. All stations communicate through single signal pair.

5.1 RS485 without galvanic isolation (COM0)

Up to 255 stations can be connected to RS485 without GI. The RS485 interface without galvanic isolation uses the common GND terminal together with power supply for external periphery. It can be used for communication with on-wall controller of type **AMR-OPxx**.

RS485 interface activity is indicated by LEDs located on front panel.

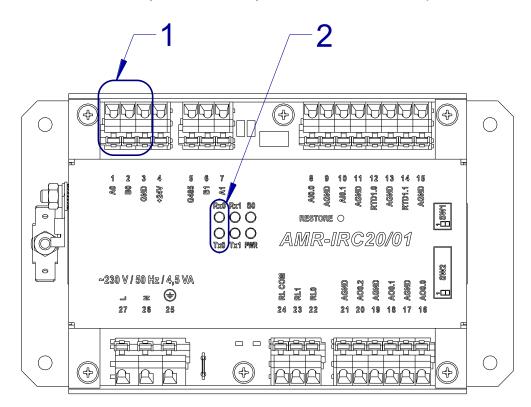


Fig. 5 – Terminals and LEDs location for RS485 without GI

Legend	Number	Description
	1	Terminals for RS485 without GI
	2	Status LED for RS485 without GI

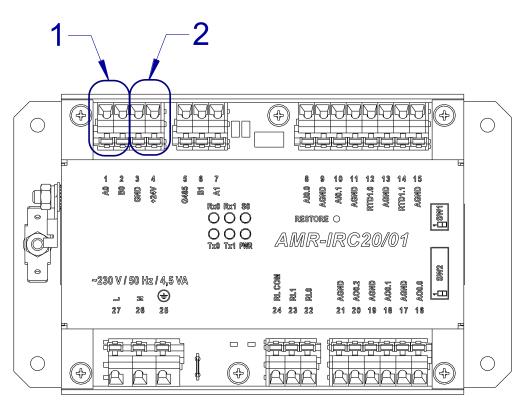
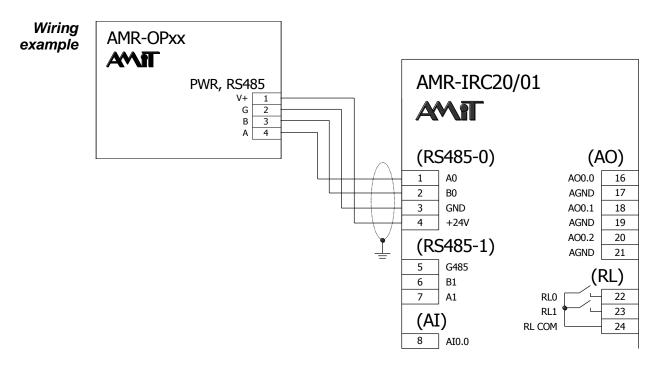
Terminals	Terminal	Signal	Description
marking	1	AO	RS485 interface without GI, signal A
	2	B0	RS485 interface without GI, signal B
	3	GND	Common ground for both RS485 interface without GI and external periphery power supply.

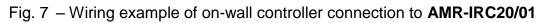
LEDs	LED	Description
description	Rx0	Controller is receiving data
	Tx0	Controller is transmitting data

Terminating resistor and idle state definition are permanently connected.

5.1.1 On-wall controller connection

Terminals 1 to 4 are typically used for on-wall controllers connection of type **AMR-OPxx** from AMiT production. It is necessary to turn off the controller power supply voltage before the on-wall controller is connected.

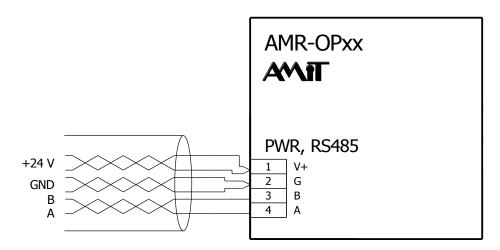



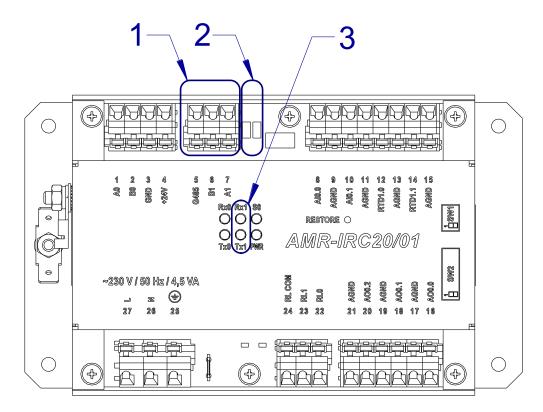

Fig. 6 – Terminals location for on-wall controller connection

Legend	Number	Description
	1	Terminals for RS485 connection of on-wall controller
	2	Terminals for power supply connection of on-wall controller

The on-wall controller is power supplied by 24 V DC from the controller **AMR-IRC20/01** and communicates through RS485 without galvanic isolation.

Note It is recommended to use structured cabling for power supply and RS485 wiring during installation. For power connection, it is recommended to use one pair of wires for positive terminal and one pair for negative terminal. Cable shielding must be connected in a single point to a PE terminal on the side of the power supply source.




Fig. 8 – Structured cabling use example

5.2 RS485 with galvanic isolation (COM1)

Up to 255 stations can be connected to RS485 with GI. It can be used for, e.g. communication with superior control system.

RS485 interface activity is indicated by LEDs located on front panel.

Legend	Number	Description
	1	Terminals for RS485 with GI
	2	Configuration jumpers
	3	Status LEDs for RS485 with GI

Terminals	Terminal	Signal	Description
marking	5	G485	RS485 interface with GI, ground
-	6	B1	RS485 interface with GI, signal B
-	7	A1	RS485 interface with GI, signal A
-			
LEDs	LED	Descriptio	n
description	Rx1	Controller i	s receiving data

Controller is transmitting data

Each station in RS485 network must have properly set terminating resistor and idle states definition. Configuration jumpers located near the RS485 connector are used for termination setting.

Tx1

Jumpers	Jumper	Description
description	J8	Signal A idle state + termination
	J9	Signal B idle state + termination

Jumpers	Description
Are set	End-station – idle states and wires termination are active.
Are not set	Intermediate station – idle states and wires termination are inactive.

More information about using the RS485 interface can be found in Application Note *AP0016 – Principles of RS485 interface usage*.

6 Inputs / outputs

6.1 Analogue inputs

The programmable controller **AMR-IRC20/01** contains 2 analogue inputs for connection of sensors with voltage output 0 V DC to 10 V DC.

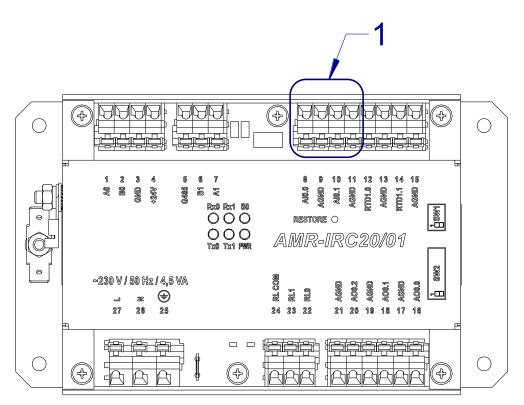
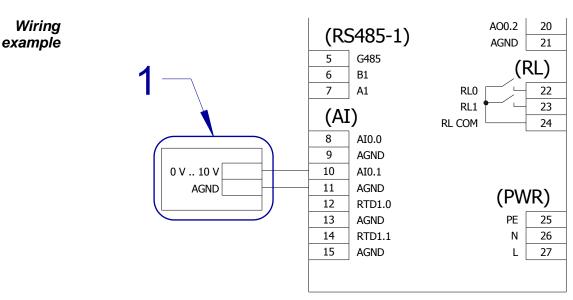
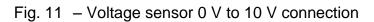
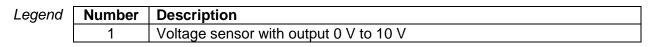


Fig. 10 – Terminals for analogue input


Legend	Number	Description
	1	Terminals for analogue inputs


Terminals marking


ls	Terminal	Signal	Description
ng	8	AI0.0	Analogue input 0
	9	AGND ¹²)	Analogue input ground
	10	AI0.1	Analogue input 1
	11	AGND ¹²)	Analogue input ground

Note ¹²) Terminal AGND is internally connected with controller's terminal GND.

6.2 RTD inputs

The programmable controller **AMR-IRC20/01** contains 2 RTD (resistance temperature detector) inputs. RTD inputs can be used as:

- analogue inputs for sensors connection,
 - Ni1000 with sensitivity 6180 ppm or with sensitivity 5000 ppm,
 - Pt1000,
- dry contact digital inputs.

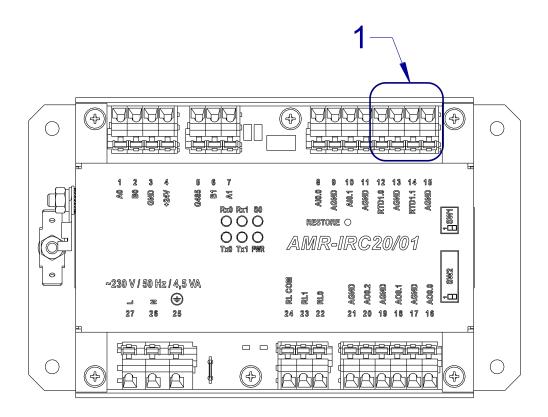


Fig. 12 - Terminals location for RTD inputs

Legend	Number	Description	
	1	Terminals for RTD inputs	

Terminals	Terminal	Signal	Description
marking	12	RTD1.0	RTD input 0
	13	AGND ¹³)	RTDI input ground
	14	RTD1.1	RTD input 1
	15	AGND ¹³)	RTDI input ground

Note ¹³) Terminal AGND is internally connected with controller's terminal GND.

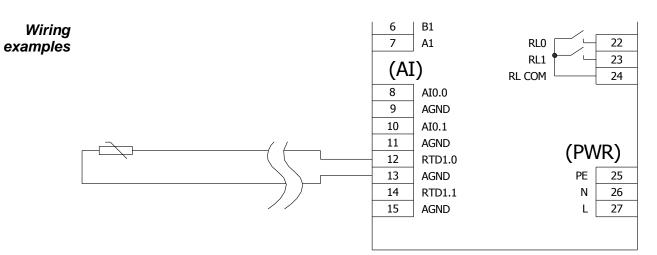
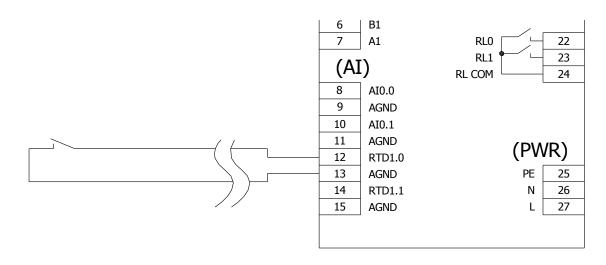
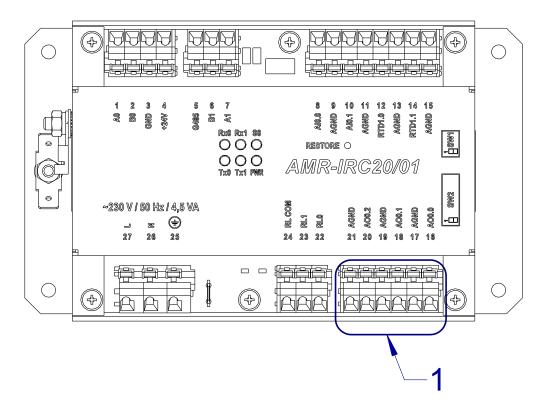
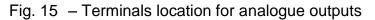


Fig. 13 – Temperature sensor wiring example


Fig. 14 – Dry contact wiring example

7 Analogue outputs

The programmable controller **AMR-IRC20/01** has three analogue voltage outputs. Output range is 0 V DC to 10 V DC. Outputs control is internally realized through Pulse Width Modulation – PWM.

Legend	Number Description 1 Terminals for analogue outputs	
	1	Terminals for analogue outputs

Terminals marking

nals	Terminal	Signal	Description	
ing	16	AO0.0	Analogue output 0	
	17	AGND	Analogue output ground	
	18	AO0.1	Analogue output 1	
	19	AGND	Analogue output ground	
	20	AO0.2	Analogue output 2	
	21	AGND	Analogue output ground	

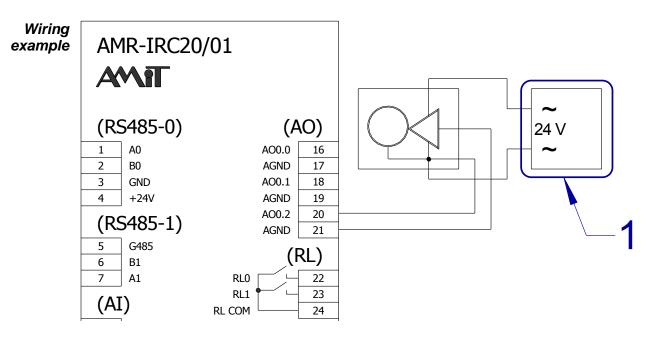
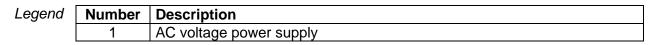



Fig. 16 - Wiring example of servo connection with AC voltage power supply

8 Relay outputs

The programmable controller **AMR-IRC20/01** contains two relay outputs with common input terminal.

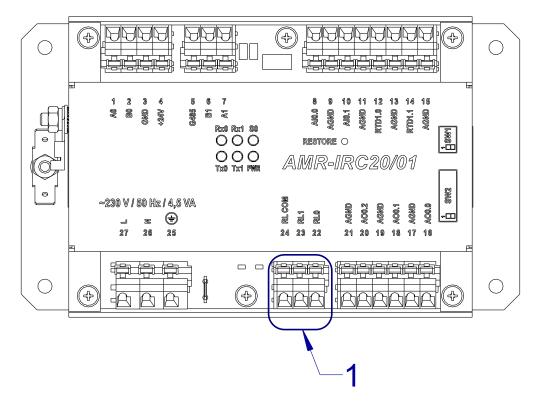
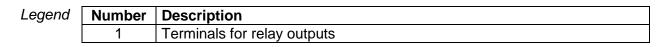



Fig. 17 - Terminals location for relay outputs

Terminals	Terminal	Signal	Description
marking	22	RL0	Relay 0 output
	23	RL1	Relay 1 output
	24	RL COM	Common input relay terminal 0 and 1

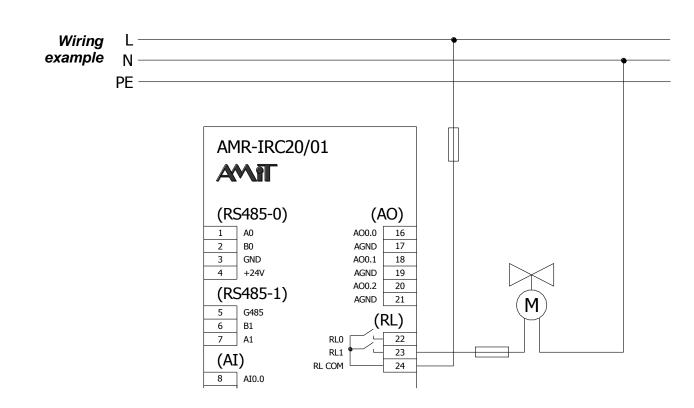


Fig. 18 – Wiring example of thermoelectric head connection to relay output

9 Mounting

9.1 Installation rules

- *EMC filter* Use an EMC filter on 230 V AC power supply voltage input. This requirement can be revised on the basis of environment character and wiring layout.
- *Main power* A bi-polar switch must be used as disconnecting element, alternatively circuit breaker with coupled break contact. The disconnecting element must be: implemented into the installation, placed in close vicinity of the equipment, available for operator and it must be marked as disconnecting element of equipment.
 - *Protection* Equipment must be protected with external circuit breaker.
- *Connection* It is recommended to connect the negative supplying terminal of unit GND *to PE* (terminal no. 3) on input to the switchboard's PE terminal.
- *Relay outputs* Cabling must be installed so that accidental release of any single wire does not cause introduction of mains voltage into safe part and vice versa.

Maximum current in the bulb is greater than its nominal current. Either the shorttime value of switched current must not overcome its maximum allowed value.

If the inlet wires are led outside the building, the appropriate outputs need to be overvoltage protected.

Analogue It is necessary to pay attention that power supply circuit must not be closed **outputs** through controller's analogue ground during the installation of power source for analogue drives.

Use shielded cables for wiring. Connect the cable shielding to the PE terminal immediately on switchboard input.

If the inlet wires are led outside the building, the appropriate outputs need to be overvoltage protected.

Analogue and Use shielded cables for analogue signals connection. Connect the cable *RTD inputs* shielding to the PE terminal immediately on switchboard input.

Use shielded wires for RTD inputs in digital input mode in environments with higher interference levels and for longer cablings. Connect the cable shielding to the PE terminal immediately on switchboard frame input.

If the inlet wires are led outside the building, the appropriate outputs need to be overvoltage protected.

RS485 It is necessary to perform RS485 interface connection according to *interface* recommendations in Application Note *AP0016 – Principles of RS485 interface* usage.

Note All PE terminal connections must be realized with the lowest impedance as possible. Technical parameters of the device are guaranteed only when these wiring principles are applied.

On-wall It is necessary to turn off the controller power supply voltage before the on-wall controller controller is connected.

10 Programming and setting

The programmable controller **AMR-IRC20/01** is factory-programmed with Loader that allows uploading of user application.

This application can be created using:

DetStudio / EsiDet development environment

Application uploading into controller can be performed only through RS485 with galvanic isolation (COM1). It can be performed using:

- DetStudio
 development environment
 - AMRconfig service and programming utility
- AMRmultidownload multiprogramming utility

Development environment can be freely downloaded from <u>www.amitomation.com</u>.

10.1 Communication parameters setting

10.1.1 RS485 without galvanic isolation (COM0)

It is necessary to set the communication parameters (address, communication speed and parity) in application created in EsiDet part of DetStudio environment.

10.1.2 RS485 with galvanic isolation (COM1)

Two sets of DIP switches located on the controller side serve for communication parameters setting.

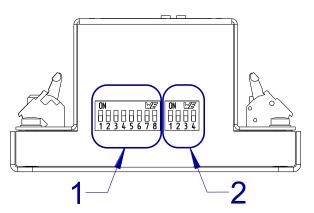


Fig. 19 - DIP switch location for communication parameters setting

	Legend	
--	--------	--

end	Number	Description
	1	DIP switches SW2
	2	DIP switches SW1

Switch	Switches	Description
description	SW1	Communication speed and parity setting
	SW2	Controller address setting

- **PC** The controller **AMR-IRC20/01** must be connected to the PC through RS485 connection converter (for example type **SB485s** from AMiT offer) in point to point connection.
 - *Note* Communication with controller can be established from DetStudio only through MODBUS RTU communication protocol (e.g. any time after loader activation, see chapter 10.3 Loader).

DIP SW1 – communication speed and parity setting

All devices must have identical parity and communication speed in network. Parity (if not given by communication protocol) and communication speed can be set by different DIP switches combination according to the tables.

SW1.1	SW1.2	SW1.3	Speed	Parity
OFF	OFF	OFF	9 600	According to SW1.4
ON	OFF	OFF	19 200	According to SW1.4
OFF	ON	OFF	38 400	According to SW1.4
ON	ON	OFF	57 600	According to SW1.4
OFF	OFF	ON	9 600	Without parity, SW1.4 setting is meaningless
ON	OFF	ON	19 200	Without parity, SW1.4 setting is meaningless
OFF	ON	ON	38 400	Without parity, SW1.4 setting is meaningless
ON	ON	ON	115 200	According to SW1.4

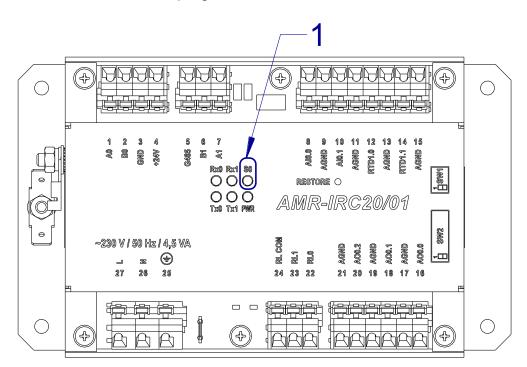
SW1.4	Parity
OFF	even
ON	odd

Stop bits number is set automatically according to selected parity:

Even parity	1 stop bit
Odd parity	1 stop bit
Without parity	2 stop bits

DIP SW2 – address setting

The controller occupies a single network address. Each device must have a unique network address (usable addresses range is given by communication protocol). Address can be set by DIP switches combination according to the table.



				SW2.8	OFF	OFF	OFF	OFF	ON	ON	ON	ON
				SW2.7	OFF	OFF	ON	ON	OFF	OFF	ON	ON
				SW2.6	OFF	ON	OFF	ON	OFF	ON	OFF	ON
SW2.1	SW2.2	SW2.3	SW2.4	SW2.5	Μ	odule	addre	ess in	MOD	BUS I	netwo	rk
OFF	OFF	OFF	OFF	OFF	0	32	64	96	128	160	192	224
ON	OFF	OFF	OFF	OFF	1	33	65	97	129	161	193	225
OFF	ON	OFF	OFF	OFF	2	34	66	98	130	162	194	226
ON	ON	OFF	OFF	OFF	3	35	67	99	131	163	195	227
OFF	OFF	ON	OFF	OFF	4	36	68	100	132	164	196	228
ON	OFF	ON	OFF	OFF	5	37	69	101	133	165	197	229
OFF	ON	ON	OFF	OFF	6	38	70	102	134	166	198	230
ON	ON	ON	OFF	OFF	7	39	71	103	135	167	199	231
OFF	OFF	OFF	ON	OFF	8	40	72	104	136	168	200	232
ON	OFF	OFF	ON	OFF	9	41	73	105	137	169	201	233
OFF	ON	OFF	ON	OFF	10	42	74	106	138	170	202	234
ON	ON	OFF	ON	OFF	11	43	75	107	139	171	203	235
OFF	OFF	ON	ON	OFF	12	44	76	108	140	172	204	236
ON	OFF	ON	ON	OFF	13	45	77	109	141	173	205	237
OFF	ON	ON	ON	OFF	14	46	78	110	142	174	206	238
ON	ON	ON	ON	OFF	15	47	79	111	143	175	207	239
OFF	OFF	OFF	OFF	ON	16	48	80	112	144	176	208	240
ON	OFF	OFF	OFF	ON	17	49	81	113	145	177	209	241
OFF	ON	OFF	OFF	ON	18	50	82	114	146	178	210	242
ON	ON	OFF	OFF	ON	19	51	83	115	147	179	211	243
OFF	OFF	ON	OFF	ON	20	52	84	116	148	180	212	244
ON	OFF	ON	OFF	ON	21	53	85	117	149	181	213	245
OFF	ON	ON	OFF	ON	22	54	86	118	150	182	214	246
ON	ON	ON	OFF	ON	23	55	87	119	151	183	215	247
OFF	OFF	OFF	ON	ON	24	56	88	120	152	184	216	248
ON	OFF	OFF	ON	ON	25	57	89	121	153	185	217	249
OFF	ON	OFF	ON	ON	26	58	90	122	154	186	218	250
ON	ON	OFF	ON	ON	27	59	91	123	155	187	219	251
OFF	OFF	ON	ON	ON	28	60	92	124	156	188	220	252
ON	OFF	ON	ON	ON	29	61	93	125	157	189	221	253
OFF	ON	ON	ON	ON	30	62	94	126	158	190	222	254
ON	ON	ON	ON	ON	31	63	95	127	159	191	223	255

Attention All switch setting changes take their effect only after controller restarting (i.e. power supply disconnection and connection).

10.2 LED S0

LED S0 serves for module program state indication.

Fig. 20 - LED S0 location

Legend

Number Description

LED S0

1

LED S0 indicates different program states by blinking with different period and length.

LED	Light	Description
S0	0.1 s flashing for 1 s period	Reset passage indication.
	Regular flashing with 0.2 s period	Loader is launched.
	Regular flashing with 1 s period	Application is launched.
	Irregular flashing with 0.5 s period	Running application is indicating error. Irregular flashing means that 2 s pause follows after a particular number of flashes. Number of flashes between two pauses indicates numeric error code: 1 – BackUp RAM reading error, 2 – eeprom reading error, 3 – suspiciously frequent writing to eeprom, 15 – unknown error.

10.3 Loader

Loader running state can be used in cases the user application is causing any troubles, e.g. repeated restarting, controller connection inability, etc.

Loader The loader can be activated by pressing "*RESTORE*" button. *activation*

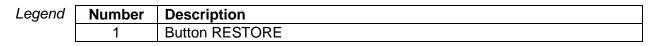



Fig. 21 – Button RESTORE button location

Particular action is called-out according to moment and duration of button press, see following table.

Pressing length	Action
> 1 s After turning-on	Loader with communication parameters set on DIP switches (SW1 a SW2) is launched.
> 3 s	Loader with communication parameters set on DIP
During application run	switches (SW1 a SW2) is launched.

11 Factory settings

RS485 The RS485 interface (COM1) is fitted with jumpers that activate wires *configuration* termination and idle state definition.

Program Communication protocol MODBUS RTU. Communication parameters are set settings of according to DIP SW1 and DIP SW2 position. interface COM1

12 Ordering information and completion

Programmable	AMR-IRC20/01	Complete, see chapter 12.1 Completion			
controller					

12.1 Completion

AMR-IRC20/01	01 Part			
	Programmable controller	1		

13 Maintenance

With exception of cleaning, the device requires no periodic control, nor maintenance.

- *Cleaning* Time after time with regard to way of device usage, it is necessary to remove dust from inside electronics. The device can be cleaned by dry soft brush or vacuum cleaner, only when turned-off and disassembled.
 - *Note* The maintenance mentioned above can be performed by manufacturer or authorized service only!

14 Waste disposal

Electronics The disposal of electronic equipment is subject to the regulations on handling electrical waste. The equipment must not be disposed in common public waste. It must be delivered to places specified for that purpose and recycled.