DMM-OT

OpenTherm/+ interface convertor with MODBUS RTU protocol

Operation manual

Version 1.00

dmm-ot_g_en_100

AMiT, spol. s r.o. does not provide any warranty concerning the contents of this publication and reserves the right to change the documentation without obligation to inform anyone or any authority about it.

This document can be copied and redistributed under following conditions:

- 1. The whole text (all pages) must be copied without any changes.
- 2. All redistributed copies must retain the AMiT, spol. s r.o. copyright notice and any other notices contained in the documentation.
- 3. This document must not be distributed for purpose of making profit.

The names of products and companies used herein can be trademarks or registered trademarks of their respective owners.

AMiT is a registered trademark.

Copyright (c) 2016, AMiT, spol. s r. o. Producer: AMiT, spol. s r. o. Naskové 1100/3, 150 00 Praha www.amitomation.com Technical support: support@amit.cz

Contents

	History of revisions	4
	Related documentation	4
1.	Introduction	5
2.	Technical parameters	6
2.1. 2.2.	Dimensions Recommended drawing symbol	7 7
3.	Conformity assessment	8
3.1.	Other tests	9
4.	Power supply	10
5.	Communication lines	12
5.1. 5.2.	RS485 OpenTherm/+ (OT/+)	12 14
6.	RUN indication LED	15
7.	Setting of communication parameters	16
7. 7.1.	Setting of communication parameters	16
7. 7.1. 7.2.	Setting of communication parameters Parity setting Setting of address and data transmission rate	16 16 17
7. 7.1. 7.2. 8.	Setting of communication parameters Parity setting Setting of address and data transmission rate Mounting	16 16 17 18
7. 7.1. 7.2. 8. 8.1.	Setting of communication parameters Parity setting Setting of address and data transmission rate Mounting Installation rules	16 16 17 18 1 8
7. 7.1. 7.2. 8. 8.1. 9.	Setting of communication parameters Parity setting Setting of address and data transmission rate Mounting Installation rules Factory settings	16 16 17 18 18 20
 7.1. 7.2. 8. 8.1. 9. 10. 	Setting of communication parameters Parity setting Setting of address and data transmission rate Mounting Installation rules Factory settings Software operation	16
 7.1. 7.2. 8. 8.1. 9. 10. 10.1. 10.2. 	Setting of communication parameters Parity setting Setting of address and data transmission rate Mounting Installation rules Factory settings Software operation Input registers layout Holding register layout	
 7.1. 7.2. 8.1. 9. 10. 10.1. 10.2. 11. 	Setting of communication parameters Parity setting Setting of address and data transmission rate Mounting Installation rules Factory settings Software operation Input registers layout Holding register layout Ordering information and completion	16
 7.1. 7.2. 8. 8.1. 9. 10. 10.1. 10.2. 11. 11.1. 	Setting of communication parameters Parity setting Setting of address and data transmission rate Mounting Installation rules Factory settings Software operation Input registers layout Holding register layout Ordering information and completion Completion	16
 7.1. 7.2. 8. 8.1. 9. 10. 10.1. 10.2. 11. 11.1. 12. 	Setting of communication parameters Parity setting Setting of address and data transmission rate Mounting Installation rules Factory settings Software operation Input registers layout Holding register layout Ordering information and completion Completion Maintenance	

History of revisions

Documer	Document name: dmm-ot_g_en_100.pdf				
Revision	Date	Author of change	Changes		
100	19. 05. 2016	Zbyněk Říha	New document		

Related documentation

- 1. Help file for EsiDet part of DetStudio development environment file: Psedet_cs.chm
- Application Note AP0008 MODBUS Network Communication file: file: ap0008_en_xx.pdf
- 3. Application Note AP0016 Principles of using RS485 interface file: ap0016_en_xx.pdf
- 4. <u>http://www.opentherm.eu</u>– OpenTherm protocol

1. Introduction

DMM-OT is an OpenTherm/+ (OT/+) interface convertor with MODBUS RTU protocol. Convertor (in combination with superior system) works as room on-wall controller with OT/+ interface and allows to control certain types of boilers.

Basic features Control of one boiler (with one or two independent circuits), including OT/+ interface

- OT/+ line with galvanic isolation
- RS485 line without galvanic isolation
- Power supply 24 V DC / AC

2. Technical parameters

OpenTherm

1	Overvoltage protection	Transil 600 W
	Galvanic isolation	Yes
	Isolation strength	300 V AC / 1 minute ¹)
	Maximum wire length	30 m / 1000 bps
	Operation indication	LED on panel
	Connection point	WAGO 734-202/037-000
	Wire cross section	0.08 mm ² to 1.5 mm ²

Note ¹) Isolation must not be used for dangerous voltage isolation.

RS485

Overvoltage protection	Transil 600 W
Galvanic isolation	No
Terminating resistor ¹)	120 Ω on the unit
Idle state definition ¹)	
to +5 V DC	1 k Ω on the unit
to 0 V DC	1 k Ω on the unit
Maximum wire length	1200 m / 19200 bps
Max. number of stations on	63
network	
Max. number of stations on	32
segment	
Operation indication	LED on panel
Connection point	WAGO 231-303/102-000
Wire cross section	0.08 mm ² to 2.5 mm ²

Note ¹) Terminating resistor and idle state definition are connected concurrently.

Power supply	Nominal power supply voltage	24 V DC / AC
	Power supply voltage range	20 V DC to 28 V DC
		18 V AC to 30 V AC
	Overvoltage protection	Transil 600 W
	Maximum power consumption	100 mA at 24 V DC
	Power outage (type)	0.5 W
	Connection point	WAGO 231-302/102-000
	Wire cross section	0.08 mm ² to 2.5 mm ²
Mechanics	Mechanical design	Plastic box
	Mounting	DIN 35 mm rail mounting
	Ingress protection rate	IP20
	Weight – netto	0.08 kg ±5 %

- brutto $0.12 \text{ kg } \pm 5 \%$ Dimensions (w × h × d) $(36 \times 99 \times 75) \text{ mm}^{-1})$

Note ¹) Dimensions including connectors and DIN rail lock.

Temperatures	Operating temperature range	0 °C to 50 °C
	Storage temperature range	0 °C to 50 °C
Others	Maximum ambient humidity	< 95 % non-condensing

2.1. Dimensions

Fig. 1 - DMM-OT dimensions

2.2. Recommended drawing symbol

Following drawing symbol is recommended for **DMM-OT** converter. Only part of it will be visible in following examples.

3. Conformity assessment

The equipment meets the requirements of NV616/2006 Czech governmental decree. The compliance assessment with NV616/2006 has been performed in accordance with harmonized standard EN 61326-1.

Tested in accordance	Type of test	Classificati
with standard		on
EN 55011:2009	Industrial, scientific and medical	Complies ¹)
	equipment – Radio-frequency	
	disturbance characteristics – Limits and	
	methods of measurement	
EN 61000-4-2:2009	Electromagnetic compatibility (EMC) –	Complies
	Part 4-2: EMC – Testing and	(±8 kV)
	measurement techniques – Electrostatic	
	discharge immunity test, aerial discharge	
EN 61000-4-3:2006	Electromagnetic compatibility (EMC) –	Complies
	Part 4-3: Testing and measurement	(10 V/m)
	techniques – Radiated, radio-frequency,	
	electromagnetic field immunity test,	
	800 MHz to 1000 MHz	
EN 61000-4-3:2006	Electromagnetic compatibility (EMC) –	Complies
	Part 4-3: Testing and measurement	(3 V/m)
	techniques – Radiated, radio-frequency,	
	electromagnetic field immunity test,	
	1000 MHz to 2100 MHz	
EN 61000-4-3:2006	Electromagnetic compatibility (EMC) –	Complies
	Part 4-3: Testing and measurement	(1 V/m)
	techniques – Radiated, radio-frequency,	
	electromagnetic field immunity test,	
	2100 MHz to 2500 MHz	
EN 61000-4-4:2012	Electromagnetic compatibility (EMC) –	Complies
	Part 4-4: Testing and measurement	(±2 kV)
	techniques – Electrical fast transient/burst	
	immunity test, power supply	_
EN 61000-4-4:2012	Electromagnetic compatibility (EMC) –	Complies
	Part 4-4: Testing and measurement	(±2 kV)
	techniques – Electrical fast transient/burst	
	immunity test, RS485	_
EN 61000-4-5:2006	Electromagnetic compatibility (EMC) –	Complies
	Part 4-5: Testing and measurement	(±2 kV)
	techniques – Surge immunity test, power	
	supply	
EN 61000-4-5:2006	Electromagnetic compatibility (EMC) –	Complies
	Part 4-5: Testing and measurement	(±1 kV)
	techniques – Surge immunity test, RS485	
EN 61000-4-6:2009	Electromagnetic compatibility (EMC) –	Complies
	Part 4-6: Testing and measurement	(3 V)
	techniques – Immunity to conducted	
	disturbances, induced by radio-frequency	
	fields	

1) This is a Class A device. In the internal environment this product can cause some radio disturbances. In such case the user can be requested to take the appropriate measures.

3.1. Other tests

Device was tested according to:

Tested in accordance with standard	Type of test	Result
EN 60068-2-1:2007	Environmental testing – Part 2-1: Tests – Test A: Cold	Complies
EN 60068-2-2:2007	Environmental testing – Part 2-2: Tests – Test B: Dry heat	Complies
EN 61000-4-29:2000	Electromagnetic compatibility (EMC) – Part 4-29: Testing and measurement techniques – Voltage dips, short interruptions and voltage variations on DC input power port – Immunity test	Complies

4. Power supply

DMM-OT converter can be powered by either DC or AC power supply. Power source must meet requirements listed in chapter 2. Technical parameters.

Fig. 3 - Power supply connector and LED indicator location

Legend	Number	Description
	1	Power supply connector
	2	Indication LED PWR

Connector	PIN	Signal	Description
labelling	4	GND	Power supply, ground
	5	₹	Power supply 24 V DC / AC

Presence of supply voltage on the connector is indicated by the PWR LED indicator.

Description of	Status	Description
PWR LED	ON	Power supply is attached.
	OFF	Power supply is not attached.

Note It is recommended to connect the GND terminals with switchboard PE terminal during installation.

Fig. 4 - Example of DC power supply connection

Legend	Number	Description
	1	T 50 mA fuse
	2	External power supply 18 V DC

5. Communication lines

DMM-OT is fitted with RS485 and OT/+ communication lines.

5.1. RS485

RS485 line circuits are not galvanically isolated. RS485 line is used to connect to the superior system and uses MODBUS RTU communication protocol. For proper operation of RS485 it is necessary to abide the rules presented in Application Note *AP0016 – Principles of using RS485 interface*.

Legend	Number	Description		
	1	RS485 line connector		
	2	RS485 configuration jumpers		
	3	RS485 indication LEDs		

Connector	PIN	Signal	Description
labelling	1	G485	RS485 line, ground (shielding)
	2	В	RS485 line, signal B
	3	A	RS485 line, signal A

Caution G485 terminal (1) is internally connected with GND terminal (4).

Legend	Number	Description
	1	Superior control system

Configuration Each station on RS485 communication line must have line termination resistors jumpers properly set. Configuration jumpers located between RS485 connector and power supply connector allow setting the termination.

Fig. 8 - Configuration jumpers detail

Description of	Jumper	Description
jumpers	J2, 1–2	Signal A idle state + termination
	J2, 3–4	Signal B idle state + termination

Jumpers	Description
Fitted	End-station – Idle state and line termination is active
Not fitted	Intermediate station - Idle state and line termination is inactive

Status Line status is indicated by system LEDs located on the front panel. indication

Descri inc

ption of	LED	Description
LED	RxD	Is ON when receiving data from RS485
dicators	TxD	Is ON when sending data to RS485

5.2. OpenTherm/+ (OT/+)

OT/+ line is intended for communication with boiler electronics via OT/+ protocol. Converter is always master. More information about communication via OT/+ protocol can be found on website of OpenTherm communication protocol developer (www.opentherm.eu).

Convertor communicates in OT/+ network constantly, regardless on MODBUS RTU communication (RS485 line).

Fig. 9 -	Location of	connectors	and	indication	LEDs
----------	-------------	------------	-----	------------	------

Legend	Number	Description
	1	Indication LED OT/+
	2	OT/+ line connector

Connector	PIN	Signal	Description
labelling	6	RC2	OT/+ line
	7	RC1	OT/+ line

Status Line status is indicated by system LEDs located on the front panel. *indication*

Description of LED indicators

n of	LED	Description
.ED	RxOT	Is ON when receiving data from OT/+
ors	TxOT	Is ON when sending data to OT/+

6. RUN indication LED

LED with RUN designation on front panel indicates the status of the convertor by flashing.

Fig. 10 - RUN indication LED location

Legend	Number	Description
	1	RUN indication LED

Following table describes individual states of LED RUN:

Light	Description
Flashing in 1 s period	Convertor communicates in MODBUS RTU network.
Flashing in 0.25 s period	Communication interruption in MODBUS RTU network.
Irregular flashing	Irregular flashing means that 5 quick flashes are followed by a pause. This state signalizes mode for convertor parity settings.

7. Setting of communication parameters

Every device in MODBUS RTU network must have the following set:

- All peripherals in the network must have **identical** parity set.
- Address (each peripheral in the network must have a **unique one**).
- All peripherals must have **identical** communication rate set.

Communication parameters can be set by the DIP switch.

Fig. 11 - DIP switch for setting the communication parameters

Superior system must have wait time set for ca. 150 characters (which in case of communication rate of 9600 bps corresponds to approx. 150 ms).

7.1. Parity setting

Parity can be set by following steps:

- Switch the convertor's power supply off.
- Switch all switches to OFF state.
- Switch the power supply on.
- Parity can be set by ADR0 (DIP 1) and ADR1 (DIP 2) switches according to the following table:

ADR0 (DIP1)	ADR1 (DIP2)	Parity
OFF	OFF	None
ON	OFF	Even
OFF	ON	Odd

 Confirm the settings by switching the BAUD1 (DIP 8) switch to ON state (LEDs on converter will flash sequentially).

Parity setting will display on LED RxD and TxD according to table:

RxD	TxD	Parity
OFF	OFF	None
ON	OFF	Even
OFF	ON	Odd

Parity change will be active after turning the convertor off and on again.

Note Communication with one stop bit takes place if there is an odd or even parity set. Communication with two stop bits takes place, when no parity is set.

7.2. Setting of address and data transmission rate

Address setting can be done by ADR0 (DIP 1) to ADR5 (DIP 6) switches. Available address values are 1 to 63. Address value 0 is not allowed!

Communication rate settings can be done by BAUD0 (DIP 7) and BAUD1 (DIP 8) switches.

Values of single switches for setting the address and communication rate are described below.

ADR0	Value of 1
ADR1	Value of 2
ADR2	Value of 4
ADR3	Value of 8
ADR4	Value of 16
ADR5	Value of 32

Switches bit values

BAUD0	BAUD1	Communication rate
OFF	OFF	9600 bps
ON	OFF	19200 bps
OFF	ON	38400 bps
ON	ON	57600 bps

Converter Address setting

		ADR5	OFF	OFF	OFF	OFF	ON	ON	ON	ON
		ADR4	OFF	OFF	ON	ON	OFF	OFF	ON	ON
		ADR3	OFF	ON	OFF	ON	OFF	ON	OFF	ON
ADR0	ADR1	ADR2	Ad	dress o	of conv	erter in	MODB	US RTL	J netwo	rk.
OFF	OFF	OFF	Х	8	16	24	32	40	48	56
ON	OFF	OFF	1	9	17	25	33	41	49	57
OFF	ON	OFF	2	10	18	26	34	42	50	58
ON	ON	OFF	3	11	19	27	35	43	51	59
OFF	OFF	ON	4	12	20	28	36	44	52	60
ON	OFF	ON	5	13	21	29	37	45	53	61
OFF	ON	ON	6	14	22	30	38	46	54	62
ON	ON	ON	7	15	23	31	39	47	55	63

On Fig. 11 is the converter address set to 13 and communication rate is 57600 bps.

Note All changes made in switches settings takes effect only after the converter restart (i.e. disconnecting and connecting of power supply).

8. Mounting

DMM-OT convertor is mounted on DIN 35 mm rail – takes up 2 module slots. Mechanical position on DIN rail is fixed by locking latch, located on the convertor bottom part.

Fig. 12 - Position of locking latch for DIN rail

Legend	Number	Description			
	1	DIN 35 mm rail lock			

8.1. Installation rules

- *EMC filter* EMC filter is used on power supply input. This requirement can be revised based on environment nature, power source properties and wiring layout.
- **Connecting to** Connect negative power supplying terminal of the convertor (GND) to the **PE** switchboard's PE terminal (at the power source).

If the wires are led outside the building, the appropriate inputs and outputs needs to be overvoltage protected.

RS485 line It is necessary to perform connecting of RS485 line according to recommendations presented in Application Note AP0016 – Principles of using RS485 interface.

- **OT/+ line** It is necessary to perform connecting of OpenTherm line according to recommendations from developer of OpenTherm (www.opentherm.eu). Cable length is limited to 30 m.
 - *Note* All connections to PE terminal must be realized with impedance as low as possible. Technical parameters of the converter are guaranteed only when these wiring principles are applied.

9. Factory settings

RS485 The RS485 line is fitted by jumpers, which activates the line termination and idle *configuration* state definition.

10. Software operation

Convertor provides data to MODBUS RTU, which are read from OT/+ network via input and holding registers. Writing of requested values can be done by holding registers.

All values are saved in BigEndian format. In the case the values are represented by Float type, it is necessary to always communicate as a pair of register at one time. Otherwise, the converter will report an error illegal data address (MODBUS error num. 2)! For holding registers, it is a necessity to use Modbus function 16.

10.1. Input registers layout

Supported functions:

04 Read Input Registers – register reading

Addres	Modicon	Descript	Signal		
S	address	ion			
100	30101	R (Int)	Status register. Individual bits have the following		
			signification:		
			Bit	Servo address	
			0	Communication with device on	
				OT/+ line is OK.	
			1	Device on OT/+ line is in failure.	
			2	CH1 heating active.	
			3	DHW heating active.	
			4	Burner starts.	
			5	DHW heating present.	
			6	CH2 heating active.	
			7	CH2 present.	
			8	CH1 heating allowed.	
			9	DHW allowed.	
			10	Maximum relative boiler	
				modulation level setting allowed.	
			11	CH2 heating allowed.	
			12	Summer boiler mode.	
101	30102	R (Int)	Last error code.		
102	30103	R (Float)	Flow temperatu	re CH1 [°C].	
103	30104				
104	30105	R (Float)	Flow temperature CH2 [°C].		
105	30106				
106	30107	R (Float)	DHW temperature [°C].		
107	30108				
108	30109	R (Float)	Return water te	mperature[°C].	
109	30110				
110	30111	R (Float)	Outside temper	ature [°C].	
111	30112				
112	30113	R (Float)	Heating source performance [%].		
113	30114				
114	30115	R (Float)	CH Water press	sure [bar].	

Addres	Modicon	Descript	Signal
S	address	ion	
115	30116		
116	30117	R (Float)	DHW flow rate [l/s].
117	30118		
118	30119	R (Float)	Exhaust temperature [°C].
119	30120		
120	30121	R (Int)	Value read from OT/+ register, ID is entered via
			MODBUS holding register 216 ¹).
121	30122	R (Int)	Status of register 120 reading ²).
122	30123	R (Int)	Writing status to OT/+ register, entered via
			MODBUS holding register 213 ²).

¹) In case ID register in OT/+ is f88 type, reading value from OT/+ is multiplied by 10 and saved to MODBUS register 120. To obtain a correct value it is necessary to divide MODBUS register value by 10. If there is value such as "231" in MODBUS register, transferring value from OT/+ is "23.1".

²) It can take values from following table:

Value	Description
0	Not processed
1	Value read
2	Value written
3	OT/+ communication error

10.2. Holding register layout

Holding registers are distributed into two groups:

- System registers,
- Application registers.

Supported functions:

- 03 Read Holding Registers reading
- 06 Write Single Register
- 16 Write Multiple Registers

System	Address	Modicon	Description	Signal
registers	0	40001	R (Int)	Hardware identification. Unit type is given by number. 118 = DMM-OT .
	1	40002	R (Int)	Firmware version.
	2	40003	R (Long)	Not used.
	3	40004		
	4	40005	R/W (Int)	Number of [s] used for communication interruption evaluation in MODBUS RTU network.
	5	40006	R (Int)	Data communication rate settings on DIP.
	6	40007	R (Int)	Parity.
	7	40008	R (Int)	Address, settings on DIP.
	8	40009	R (Int)	Not used.
	9	40010	R/W (Int)	Number of messages received from MODBUS RTU.

Application registers	Address	Modicon address	Description	Signal	
U	100	40101	R (Int)	Status registe	er. Individual bits have the
				following sign	ification:
				Bit	Servo address
				0	Communication with device on
					OT/+ line is OK
				1	Device on OT/+ line is in failure
				2	CH1 heating active
				3	DHW heating active
				4	Flame on
				5	DHW heating present
				6	CH2 heating active
				7	CH2 present
				8	CH1 heating allowed
				9	DHW allowed
				10	Maximum relative boiler
					modulation level setting allowed
				11	CH2 heating allowed
				12	Summer boiler mode
	101	40102	R (Int)	Last error coo	de.
	102	40103	R (Float)	Flow tempera	iture CH1 [°C].
	103	40104			
	104	40105	R (Float)	Flow tempera	iture CH2 [°C].
	105	40106			
	106	40107	R (Float)	DHW tempera	ature [°C]:
	107	40108			
	108	40109	R (Float)	Return water	temperature [°C].
	109	40110			
	110	40111	R (Float)	Outside temp	erature [°C].
	111	40112			
	112	40113	R (Float)	Heating source	ce performance [%].
	113	40114			
	114	40115	R (Float)	CH Water pre	essure [bar].
	115	40116			
	116	40117	R (Float)	DHW flow rat	e [l/min].
	117	40118			
	118	40119	R (Float)	Exhaust temp	perature [°C].
	119	40120			
	120	40121	R (Int)	Value read fro	Om OI/+ register, ID is entered
	101	40100	D (Int)	Status of rogi	1000000000000000000000000000000000000
	121	40122		Entry status 1	Ster 120 reduing -).
		40123		MODBUS ho	ding register 213 ²).

¹) In case ID register in OT/+ is f88 type, reading value from OT/+ is multiplied by 10 and saved to MODBUS register 120. To obtain a correct value it is necessary to divide MODBUS register value by 10. If there is value such as "231" in MODBUS register, transferring value from OT/+ is "23.1".

²) It can take values from following table:

Value	Description
0	Not processed
1	Value read
2	Value written
3	OT/+ communication error

Following can be written into holding registers:

Address	Modicon	Description	Signal		
200	40201	R/W (Int)	Status register. Individual bits have the following signification:		
			Bit Servo address		
			0 CH1 control setpoint write blocking.		
			1 CH2 control setpoint write blocking.		
			2 DHW control setpoint write blocking.		
			3 CH1 room setpoint write blocking.		
			4 CH2 room setpoint write blocking.		
			5 CH1 allowing.		
			6 DHW allowing.		
			7 Enabling of maximum relative boiler modulation level setting.		
			8 CH2 allowing.		
			9 Summer boiler mode setting.		
			10 Enabling to read from OT/+ register,		
			entered via MODBUS		
			holding register 216.		
			entered via MODBUS holding		
			register 213.		
201	40202	R/W (Float)	TV1 control setpoint [°C].		
202	40203				
203	40204	R/W (Float)	TV2 control setpoint [°C].		
204	40205				
205	40206	R/W (Float)	DHW control setpoint [°C].		
206	40207				
207	40208	R/W (Float)	CH1 room setpoint [°C].		
208	40209	P/M/ (Floot)	CH2 room sotpoint [°C]		
209	40210	R/W (Fluat)			
210	40211	R/W (Float)	Maximum relative boiler modulation level		
212	40212	1000 (11000)			
213	40214	R/W (Int)	ID of OT/+ register, value in holding		
		,	register 215 is written to this ID.		
214	40215	R/W (Int)	Data type of OT/+ register, value in holding		
		, ,	register 215 is written to this ID ¹).		
215	40216	R/W (Int)	Value is written to OT/+ register, ID is		
			entered in holding register 213 ²).		

A	\checkmark	
		_

Address	Modicon address	Description	Signal
216	40217	R/W (Int)	ID of OT/+ register, value is read to input/holding register 120.
217	40218	R/W (Int)	Data type of OT/+ register, value is read to input/holding register 120 ¹).

¹) It can take values from following table:

Value	Data type in OT/+ line
0	u8, flag8
1	s8
2	f88
3	u16
4	s16

²) In case ID register in OT/+ is f88 type, it is necessary to write integer value in format: "written value × 10". If we want to write, e.g. value "23.1", into peripheral, it is necessary to write value "231".

11. Ordering information and completion

Converter DMM-OT

Unit complete, see chapter 11.1.Completion.

11.1. Completion

Part	Quantity
OpenTherm/+ interface convertor with MODBUS RTU interface	1
WAGO 734-202/037-000	1
WAGO 231-303/102-000	1
WAGO 231-302/102-000	1

12. Maintenance

Device requires no periodic control, nor maintenance.

- *Cleaning* Time after time with regard to way of device usage, it is necessary to remove dust from inner electronics. The equipment can be cleaned by dry soft brush or vacuum cleaner, only when turned-off and disassembled.
 - *Note* The maintenance mentioned above can be performed by manufacturer or authorized service only!

13. Waste disposal

Electronics The disposal of electronic equipment is subject to the regulations on handling electrical waste. The equipment must not be disposed of in common public waste. It must be delivered to places specified for that purpose and recycled.